Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study.

نویسندگان

  • Abhijit S Joshi
  • Ying Sun
چکیده

A three-dimensional lattice Boltzmann method (LBM) has been developed for multiphase (liquid and vapor) flows with solid particles suspended within the liquid phases. The method generalizes our recent two-dimensional model [A. Joshi and Y. Sun, Phys. Rev. E 79, 066703 (2009)] to three dimensions, extends the implicit scheme presented therein to include interparticle forces and introduces an evaporation model to simulate drying of the colloidal drop. The LBM is used to examine the dynamical wetting behavior of drops containing suspended solid particles on homogeneous and patterned substrates. The influence of the particle volume fraction and particle size on the drop spreading dynamics is studied as is the final deposition of suspended particles on the substrate after the carrier liquid evaporates. The final particle deposition can be controlled by substrate patterning, adjusting the substrate surface energies and by the rate of evaporation. Some of the envisioned applications of the model are to develop a fundamental understanding of colloidal drop dynamics, predict particle deposition during inkjet printing of functional materials and to simulate the drying of liquids in porous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Lattice Boltzmann simulation of capillary interactions among colloidal particles

We present a numerical model for dynamic simulation of colloidal particles attached to a fluid interface. A new coupling method is proposed for combining Newtonian dynamics for colloidal particles and the lattice Boltzmann method for fluid phases so as to account for the wetting properties of particle surfaces. With this feature, capillary interaction of colloidal particles, in addition to elec...

متن کامل

Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions.

We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth...

متن کامل

Role of the free surface in particle deposition during evaporation of colloidal sessile drops

Deposition patterns of particles suspended in evaporating colloidal drops are determined by the flow fields within the drops. Using analytically determined velocities, particle motions are then tracked in a Lagrangian sense. It is found that the majority of particles intersect the free surface as it recedes. Such “capture” of particles by the free surface is found to be the major mechanism in e...

متن کامل

A new model for simulating colloidal dynamics

We present a new hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of spherical colloidal particles. The solvent is modelled on the level of the lattice-Boltzmann method whereas the molecular dynamics is done for the solute. The coupling between the two is implemented through a frictional force acting both on the solvent and on the solute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010